a2 United States Patent

Fairweather

US007158984B2

US 7,158,984 B2
Jan. 2, 2007

(10) Patent No.:
45) Date of Patent:

(54) SYSTEM FOR EXCHANGING BINARY DATA
(76) Inventor: John Fairweather, 1649 Wellesley Dr.,
Santa Monica, CA (US) 90405
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 122 days.
(21) Appl. No.: 10/357,325
(22) Filed: Feb. 3, 2003
(65) Prior Publication Data
US 2004/0073913 Al Apr. 15, 2004
(51) Imt.CL
GO6F 17/30 (2006.01)
(52) US.CL oo 707/101; 719/328
(58) Field of Classification Search 707/100,
707/104.1, 1, 200, 709/203; 719/328; 717/103,
717/106, 108, 121
See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS
5,897,642 A * 4/1999 Capossela et al. 707/203
6,591,274 B1* 7/2003 Smith et al. 707/104.1
6,883,087 B1* 4/2005 Raynaud-Richard
etal. oo, 712/213

* cited by examiner

Primary Examiner—Greta Robinson

Assistant Examiner—Cheryl Lewis

(74) Attorney, Agent, or Firm—Merchant & Gould P.C.;
Stanley J. Gradisar

(57) ABSTRACT

A strongly-typed, distributed, run-time system capable of
describing and manipulating arbitrarily complex, non-flat,
binary data derived from type descriptions in a standard (or
slightly extended) programming language, including han-
dling of type inheritance. The system is composed of four
primary components. First, a plurality of databases having
binary type and field descriptions. Second, a run-time modi-
fiable type compiler that is capable of generating type
databases either via explicit API calls or by compilation of
unmodified header files or individual type definitions in a
standard programming language. Third, a complete API
suite for access to type information as well as full support for
reading and writing types, type relationships and inherit-
ance, and type fields, given knowledge of the unique
numeric type ID and the field name/path. Finally, a hashing
process for converting type names to unique type IDs (which
may also incorporate a number of logical flags relating to the
nature of the type). Further extensions and improvements
are also provided as described herein.

19 Claims, 4 Drawing Sheets

typedef struct ET_Field // Type Field recoxd
{ /7 .
ET_HGr hdx; // Standard heap data reference fields | 102
union e
{ p—
ET_TypelD typelD: // ID of this type
struct
{
unsingi2 crce; // 1D viewed as a pair of integers 104
unsIngld2 flags;
} s
}our _
ET_Offset /* ET_StringPry >/ fName: // 11y ref. to name string of this field) 106
ET_Offser /* ET_StringPtr */ fDesc: /7 11t ref. to field description |} 108
ET_Offset /+ ET_FieldPtr +/ fieldlink; // 1! ref. to next field of cype) 110
unsIinclé offset; // byte offset of this field | 112
ET UnicID unitcliD; // unit ID for this field, 0 1if W/A] 114
unsIntlé bounds ; // for array fields, # of elements 1 118
unsIntls bounds2; // for 2rarray fields, 2nd dimension |
118
ET_Offset /v ET_Stringbtxr */ fScript; J/ Y1t ref. to scripc for this fileld | 120
ET_Offser /x ET_StringBir */ fAnnotaticn:// !!! ref. to additional annotarion text] 122
inc3iz flaglIndex; // flag index for this field }124
ET_Offset /+ ET_StringP:ix ~/ fEchoField;// !!! ref. to name of echo field (if any)] 126
ET_Typell flagIndexTypelD; // type ID fcr value of flag index | 128
long notUsed[1l:// spare
} BT _Field: 7/

U.S. Patent Jan. 2, 2007 Sheet 1 of 4 US 7,158,984 B2

typedef struct BET_Fisld // Zvpe Field reacord
{ 124 _
ET_Hdr hdr; // Standard heap data reference fields | 102
union ek
T _TypelD typell; // ID of this type
struct
unslingil cYCe; // ID viewed as a pair of integers 104
unsIng32 £lags;
} s
}oug -
ET_Offset /+ ET_StringPtr */ fNams; /f 10t ref. tc name string of this field) 106
ET _Offset /* ET_StringPcr */ fDesc; // 11t ref. te field description |} 108
ET_Offset /* ET_FieldPrr » fieldLink; // t!! ref. tc next field of type]| 110
unsIntls offset; // byte offsec ¢f this field] 112
ET_YniLIp unicip; // unit ID for this field, 0 if N/A 1 114
unsint1s bounds ; // for array fields, # of zlements 1 116
unsIntls bounds2; // for 2rarray fields, 2nd dimensicn)
118
ET_Offset /+ ET_StringPtr */ f{Script; // 11t ref. to script for this field) 120
ET_Offset /~ ET_StringBzx */ fannotation;// :!! ref. to additional annotation text] 122
intl2 fiagIndex; // flag index for this field 1124
ET_Offset /* ET_StringPir »/ fEchoField;// !!! ref. to name of echo field (if any)} 128
ET_TypelD flaglndexTypelD; // type ID for value of flag index:\ 128
long notUsed[1]; // spare
} ET_Field: /7

FIG. 1

US 7,158,984 B2

Sheet 2 of 4

Jan. 2, 2007

U.S. Patent

osz [2dA3 oUy3 UT PIOTI JO IaqunU

g¥z[X°putr Bell PIS2TI IO SNTeA wnwTxeuw

9%z [odda eviep Asy TeDOT 3IxX8uU 03 " ISI |
$HZ [IX93 UOTIRIOUUBR TRUOTITPPE O3 *Jax
vz { {(Aue I7) odKk3 sTUl xo03 AdTIDS O3 " FDX i
0¥ [jusIeg TEOO[-UCU JFC I

ggz [2dA3 PITYa [ED0T-uUcu 3SITJ O dI

ggz [adAy BuTygrs ytEOOI-UOU 3xX8N JO di

vz [odAy sTy3z xo03 2dA3 eIEp A9y ‘oxsz-UOU IT
z€z[o713 Buturzisp Jo (I wox3) X=purl

ogz{ (s3jusxed = ATTRWIOU} AXjUs 27d9el] IOTOD
gzz{ (poandwos = p) 2dA] sTUYl JO S2TS 23AQ
9zz [uvotrsuswmip pug ‘sadAy Aeiieyg I0j7

ygz{ spunoq 3Y3l ST styl ’'sadhy Aexxe 103

zzz [adAa STU3 1037 1ISTT SpIomAay 031 ~3Fax
pzz[spyo713 Jusucdwod IO ISTT O3 IA9peay
81z { (Te20T 3t) =2dA3 pyiys 3sIti 03 ~3FsX
9tz{ (3ussaxd JT) Butzns JapsdAl o3 -Isx i
ziz [dnoab/sdA3 BUTTYTIE T[BOOT 3IX3U 03 "F3X jii
otz 2dA3 107 291 9aTIdTI0SIP OF "ISX i

[Ae1dsTp ITIneISp O3 "I91 jii

80c| ISTpuUBY 3ITPS 3TNEFSp 03 "IBT (il

g0z [@dAl STYl JO SWRU 63 “IDI i

saxsbejutr Jo xted B se pamaTa I

yoz[=dA1 €Tya jJo AIr

zoz[SPTSTI Ispeay piepuels

pxcosa adis xotdwtsg

/7

// !SprITJwnu
J/ ixepuIpraTaAxRll
// {edArAayaxsu
// ‘{uorj3ejouuyil
/f 13dracsl
// g1ayusaed
// !IPHAIPTTUD
[/ IMUTIAIPTTUS
7/ fgrsdAriesy
// IXapUIATTI

7/ {10700
/7 !9zTS
// !gspunoqg
/7 Ispunog
/7 {spaomhay
s !IPHPT®TY
7/ {IPHPTTUD
/7 {1epadAlD
/7 HUTIPTTYD
// ‘uotadiaossp
[/ ‘Aerdstp
// TP
/7 !swmeu
!sbeT3
// !oxo
l/ ‘gredia
/! Lapy
r
/7

fedAr 1a |

9T3uUISUN
9T3UIsUN
/x IadedAl 1d »/ 39830 1d
/x X3dBUTIIS IF «/ 3IDSII0 1A
/% I33BUTIAS LA «/ 395330 14
arsdiy” 18
ar=dAr 13
arsdAr 13
adArsc
9TIUISUN
aeypsun
ZEjulsun
9T3UISUn
YTIUISUT
/» 23abutaigs 1d «/ 3198310 14
/¥ A3dPI2Td IE »/ 395330 1Y
/s I3aadAl 13 »/ 3195330 14
/» I3dBUTIAS IX x/ 298II0 14
/% *332dAL7 13 «/ 198330 L&
/» X3dButans LE x/ I95I30 4F
/x I3dBUTIIS 1A «/ I9SIIO 14
/» I3dBUTIIS 1™ +/ IDSIIO 1E
/+ I3gbUTIIS LA x/ ISSIIO I
n A

'g A

zgauIsun
zgaursun

}

3onxias

arediL 13
ﬁoﬂaw
IpH 1E

}

00z{ 2dA1 13 3onxje Fapadi)

¢ 9l

U.S. Patent Jan. 2, 2007 Sheet 3 of 4 US 7,158,984 B2

/315

Type:Mammal

arp ﬂ / 330 / 335

305 Field:hairColor ==X Field:gestation

320
e ; 310
Type:Dog Type:Cat \
325
iL iL / 340
Field:barkVol Field:purrVol

K 345

FIG. 3

U.S. Patent

Jan. 2, 2007

Sheet 4 of 4

US 7,158,984 B2

kUniversalType
kVoidType
xScalarType
kIntegerNumbersType
kInt8Type
kUnsInt8Type
kBeooleanType
kIntl6Type
KUnsIntl6Type
kInt32Type
kKUnsInt32Type
KInt64Type
kUnsints4Type
kRealNumbersType
kFloa:zType
kShortboubleType
kDoubleType
kLongDoubleType
kStringType
445
kFileNameType
kStructType
kUnionType
kFunctionType

"Universal”

“Void”

“Scalar”

“Integer”

“Int8”

“UnsInt§”

“Boolean”

“intlé”

“UnsInclé”

“Int327

“UnsInt32”

“Inté4”

“UnsInt64”]
“Real”

“Float”

“Shortbouble”

“Double”

“LongDouble” erd

“CString“ - special cased as a scalar
“TileName” - special case handled explicitcly
“Struct” laz20

“Union” la2s

“Function” 1430

408
410
418

440

FIG. 4

US 7,158,984 B2

1
SYSTEM FOR EXCHANGING BINARY DATA

CROSS REFERENCE TO RELATED
APPLICATION

This application is related to the following patent appli-
cations which were filed on the same day herewith, which
are owned by the same assignee of this invention, and which
are incorporated herein by reference in their entirety: appli-
cation Ser. No. 10/357,288 filed on Feb. 3, 2003 titled “A
SYSTEM AND METHOD FOR MANAGING MEMORY,”
application Ser. No. 10/357,324 filed on Feb. 3, 2003 titled
“A SYSTEM AND METHOD FOR PARSING DATA,” and
application Ser. No. 10/357,326 filed on Feb. 3, 2003 titled
“SYSTEM AND METHOD FOR ANALYZING DATA.”

REFERENCE TO A COMPUTER PROGRAM
LISTING APPENDIX

A computer program listing appendix is submitted on two
compact discs (Copy 1 and Copy 2). These discs are
identical to each other. Each disc includes seven ASCII files
comprising a computer program listing appendix. All mate-
rial therein is hereby incorporated by reference in its entirety
in this application. The names and indicated sizes of the files
on the compact discs are: BasicTypes.txt (4 Kbytes),
BNF.txt (8 Kbytes), FnPrototypes.txt (36 Kbytes), LEX.txt
(4 Kbytes), Plugln.txt (14 Kbytes), Resolver.txt (9 Kbytes)
and TypelD.txt (3 Kbytes). These files include example
source code illustrating specific implementations of specific
embodiments of the invention along with explanatory text.
These compact discs were created on the filing date indi-
cated above and are in Macintosh® format.

BACKGROUND OF THE INVENTION

In most modern computer environments, such as pro-
gramming languages, and applications, the programming
language compiler itself performs the job of defining data
structures and the types and the fields that make them up.
That type information is compile-time determined. This
approach has the advantage of allowing the compiler itself
to detect many common programmer errors in accessing
compound data structures rather than allowing such errors to
occur at run-time where they are much harder to find.
However, this approach is completely inadequate to the
needs of a distributed and evolving system since it is
impossible to ensure that the code for all nodes on the
system has been compiled with a compatible set of type
definitions and will therefore operate correctly. The problem
is aggravated when systems from different vendors wish to
exchange data and information since their type definitions
are bound to be different and thus the compiler can give no
help in the exchange. In recent years, technologies such as
B2B suites and XML have emerged to try to facilitate the
exchange of information between disparate knowledge rep-
resentation systems by use of common tags, which may be
used by the receiving end to identify the content of specific
fields. If the receiving system does not understand the tag
involved, the corresponding data may be discarded. These
systems simply address the problem of converting from one
‘normalized’ representation to another, (i.e., how do I get it
from my relational database into yours?) by use of a tagged,
textual, intermediate form (e.g. XML). Such text-based
markup-language approaches, while they work well for
simple data objects, have major shortcomings when it comes
to the interchange of complex multimedia and non-flat (i.e.,

20

25

30

35

40

45

50

55

60

65

2

having multiple cross-referenced allocations) binary data.
Despite the ‘buzz’ associated with the latest data-inter-
change techniques, such systems and approaches are totally
inadequate for addressing the kinds of problems faced by a
system, such as an intelligence system, which attempt to
monitor and capture ever-changing streams of unstructured
or semi-structured inputs, from the outside world and derive
knowledge, computability, and understanding from the data
so gathered. The conversion of information, especially com-
plex and multimedia information to/from a textual form such
as XML becomes an unacceptable burden on complex
information systems and is inadequate for describing many
complex data interrelationships. This approach is the current
state of the art. At a minimum, what is needed is an
interchange language designed to describe and manipulate
typed binary data at run-time. Ideally, this type information
will be held in a ‘flat’ (i.e., easily transmitted) form and
ideally is capable of being embedded in the data itself
without impact on data integrity. The system would also
ideally make use of the power of compiled strongly typed
programming languages (such as C) to define arbitrarily
interrelated and complex structures, while preserving the
ability to use this descriptive power at run-time to interpret
and create new types.

SUMMARY OF INVENTION

The present invention provides a strongly-typed, distrib-
uted, run-time system capable of describing and manipulat-
ing arbitrarily complex, non-flat, binary data derived from
type descriptions in a standard (or slightly extended) pro-
gramming language, including handling of type inheritance.
The invention comprises four main components. First, a
plurality of databases having binary type and field descrip-
tions. The flat data-model technology (hereinafter “Claimed
Database”) described in application Ser. No. 10/357,288
filed on Feb. 3, 2003 titled “A SYSTEM AND METHOD
FOR MANAGING MEMORY™ is the preferred model for
storing such information because it is capable of providing
a ‘flat’ (i.e., single memory allocation) representation of an
inherently complex and hierarchical (i.e., including type
inheritance) type and field set. Second, a run-time modifi-
able type compiler that is capable of generating type data-
bases either via explicit API calls or by compilation of
unmodified header files or individual type definitions in a
standard programming language. This function is preferably
provided by the parsing technology (hereinafter “Claimed
Parser”) described in application Ser. No. 10/357,324 filed
on Feb. 3, 2003 titled “A SYSTEM AND METHOD FOR
PARSING DATA.” Third, a complete API suite for access to
type information as well as full support for reading and
writing types, type relationships and inheritance, and type
fields, given knowledge of the unique numeric type ID and
the field name/path. A sample API suite is provided below.
Finally, a hashing process for converting type names to
unique type IDs (which may also incorporate a number of
logical flags relating to the nature of the type). A sample
hashing scheme is further described below.

The system of the present invention is a pre-requisite for
efficient, flexible, and adaptive distributed information sys-
tems.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 provides a sample implementation of the data
structure ET_Field

FIG. 2 provides a sample code implementation of the data
structure ET_Type;

US 7,158,984 B2

3

FIG. 3 is a block diagram illustrating a sample type
definition tree relating ET_Type and ET_Field data struc-
tures; and

FIG. 4 provides a sample embodiment, of the logical flags
that may be used to describe the typelD.

DETAILED DESCRIPTION OF THE
INVENTION

The following description provides an overview of one
embodiment of the invention. Please refer to the co-pending
patent applications incorporated by reference in their
entirety for a more complete understanding of the Claimed
Parser and Claimed Database.

All type information can be encoded by using just two
structure variants, these are the ‘ET_Field” structure, which
is used to describe the fields of a given type, and the
‘ET_Type’ structure, which is used to described the type
itself. Referring now to FIG. 1, a sample implementation of
the ET_Field structure 100 is provided. The fields in the
ET_Field structure are defined and used as follows:

“hdr” 102—This is a standard header record of type
ET_Hdr as defined in the Claimed Database patent
application.

“typelD” 104—This field, and the union that surrounds it,
contain a unique 64-bit type ID that will be utilized to
rapidly identify the type of any data item. The method
for computing this type ID is discussed in detail below.

“fName” 106—This field contains a relative reference to
an ET_String structure specifying the name of the field.

“fDesc” 108—This field may contain a relative reference
to an ET_String structure containing any descriptive
text associated with the field (for example the contents
of the line comments in the type definitions above).

“fieldLink” 110—This field contains a relative reference
to the next field of the current type. Fields are thus
organized into a link list that starts from the “field-
HDR” 220 field type and passes through successive
“fieldLink™ 110 links until there are no more fields.

“offset” 112—This field contains the byte offset from the
start of the parent type at which the field starts. This
offset provides rapid access to field values at run-time.

“unitID” 114—This field contains the unique unit ID of
the field. Many fields have units (e.g., miles-per-hour)
and knowledge of the units for a given field is essential
when using or comparing field values.

“bounds” 116—For fields having array bounds (e.g., and
array of char[80]), this field contains the first array
dimension.

“bounds2” 118—For two dimensional arrays, this field
contains the second dimension. This invention is par-
ticularly well-adapted for structures of a higher dimen-
sionality than two, or where the connections between
elements of a structure is more complex that simple
array indexing.

“fscript” 120—Arbitrary and pre-defined actions, func-
tions, and scripts may be associated with any field of a
type. These ‘scripts’ are held in a formatted character
string referenced via a relative reference from this field.

“fAnnotation” 122—In a manner similar to scripts, the
text field referenced from this field can contain arbi-
trary annotations associated with the field. The use of
these annotations will be discussed in later patents.

“flagindex” 124—1It is often convenient to refer to a field
via a single number rather than carrying around the

20

25

30

35

40

45

50

55

60

65

4

field name. The field index is basically a count of the
field occurrence index within the parent type and serves
this purpose.

“fEchoField” 126—This field is associated with forms of
reference that are not relevant to this patent arid is not
discussed herein.

“flagIndexTypelD” 128—1In cases where a field is embed-
ded within multiple enclosing parent types, the ‘flag-
Index” value stored in the field must be tagged in this
manner to identify which ancestral enclosing type the
index refers to.

Referring now to FIG. 2, a sample embodiment of the
ET_Type structure 200 is provided. The fields of the
ET_Type structure 200 are defined and used as follows:

“hdr” 202—This is a standard header record of type ET
Hdr as defined in the Claimed Database patent appli-
cation.

“typelD” 204—This field, and the union that surrounds it,
contain a unique 64-bit type 1D that will be utilized to
rapidly identify the type of any data item. The method
for computing this type ID is discussed in detail below.

“name” 206—This is a relative reference to a string
giving the name of the type.

“edit”, “display” 208—These are relative references to
strings identifying the “process™ to be used to display/
edit this type (if other than the default). For example the
specialized process to display/edit a color might be a
color-wheel dialog rather than a simple dialog allowing
entry of the fields of a color (red, green, blue)

“description” 210—This is a relative reference to a string
describing the type.

“ChildLink” 212—For an ancestral type from which
descendant types inherit, this field gives the relative
reference to the next descendant type derived from the
same ancestor. Type hierarchies are defined by creating
trees of derived types. The header to the list of child
types at any level is the “childHdr” field 218, the link
between child types is the “ChildLink” field 212.
Because types are organized into multiple type data-
bases (as discussed later), there are two forms of such
links: the local form and non-local form. The non-local
form is mediated by type ID references, not relative
references (as for the local form), and involves the
fields “childIDLink” 236, “childIDHdr” 238, and
“parentID” 240 (which hold the reference from the
child type to its parent). The parent reference for the
local form is held in the “parent” field of “hdr” 202.

“cTypedef” 216—This field may optionally contain a
relative reference to a string giving the C language type
definition from which the type was created.

“childHdr” 218—This field contains the header to the list
of child types at any level.

“fieldHDR” 220—Fields are organized into a link list that
starts from the this field.

“keywords” 222—This field contains a relative reference
to a string containing key words by which the type can
be looked up.

“bounds” 224, “bounds2” 226—array dimensions as for
ET_Field

“size” 228—Total size of the type in bytes.

“color” 230—To facilitate type identification in various
situations, types may be assigned inheritable colors.
“fileIndex” 232—used to identify the source file from

which the type was created.

“keyTypelD” 234—This field is used to indicate whether
this type is designated a “key” type. In a full data-flow

US 7,158,984 B2

5

based system, certain types are designated ‘key’ types
and may have servers associated with them.

“nextKeyType” 246—This field is used to link key types

into a list.
“tScript” 242, “tAnnotation” 244—These fields reference
type scripts and annotations as for ET_Field 100.

“maxfieldIndex” 248—This field contains the maximum
field index value (see ET_Field 100) contained within
the current type.

“numFields” 250—This gives the total number of fields

within the current type.

To illustrate the application of these structures 100, 200 to
the representation of types and the fields within them,
consider the type definitions below whereby the types “Cat”
and “Dog” are both descendant from the higher level type
“Mammal” (denoted by the “::” symbol similar to C++
syntax).

type def struct Mammal

RGBColor hairColor;

int32 gestation; // in days
} Mammal;
typedef struct Dog::Mammal

int32 barkVol; // in decibels
} Dog;
typedef struct Cat::Mammal
{

int32 purrVol; // in decibels
} Cat;

Because they are mammals, both Cat and Dog inherit the
fields “hairColor” and “gestationPeriod” which means the
additional field(s) defined for each start immediately after
the total of all inherited fields (from each successive ances-
tor). Referring now to FIG. 3, this portion of the type
definition tree when viewed as a tree of related ET_Type 200
and ET_Field 100 structures is shown. In this diagram, the
vertical lines 305 linking the types 315, 320 are mediated via
the “childHdr” 218 and “parent” 240 links. The horizontal
line 310 linking Dog 320 and Cat 325 is mediated via
“ChildLink” 242. Similarly for the field links 330, 335, 340,
345 within any given type, the fields involved are “paren-
tID” 240, “fieldHDR” 220, and “fieldLink” 110. It is thus
very obvious how one would navigate through the hierarchy
in order to discover say all the fields of a given type. For
example, the following sample pseudo code illustrates use of
recursion to first process all inherited fields before process-
ing those unique to the type itself.

void LoopOverFields (ET__Type *aType)
{
if (aType->hdr.parent)
LoopOverFields(aType->hdr.parent)
for (fieldPtr = aType->fieldHdr ; fleldPtr ; fieldPtr = fieldPtr—>
fieldLink)
-- do something with the field
¥

Given this simple tree structure in which type information
is stored and accessed, it should be clear to any capable
software engineer how to implement the algorithms set forth
in the Applications Programming Interface (APT) given
below. This API illustrates the nature and scope of one set of
routines that provide full control over the run-time type

20

25

30

35

40

45

50

55

60

65

6

system of this invention. This APT is intended to be illus-
trative of the types of capabilities provided by the system of
this invention and is not intended to be exhaustive. Sample
code implementing the following defined API is provided in
the Computer Program Listing Appendix.

The routine TM_CruiseTypeHierarchy() recursively iter-
ates through all the subtypes contained in a root type, call out
to the provided callback for each type in the hierarchy. In the
preferred embodiment, if the function ‘callbackFunc’ returns
-1, this routine omits calling for any of that types sub-types.

The routine TM_Code2TypeDB() takes a type DB code
(or TypelD value) and converts it to a handle to the types
database to which it corresponds (if any). The type system
of this invention allows for multiple related type databases
(as described below) and this routine determines which
database a given type is defined in.

TM_InitATypeDB() and TM_TermAlypeDB() initialize
and terminate a types database respectively. Each type DB
is simply a single memory allocation utilizing a ‘flat’
memory model (such as the system disclosed in the claimed
Database patent application) containing primarily records of
ET_Type 100 and ET_Field 200 defining a set of types and
their inter-relationships.

TM_SaveAlypeDB() saves a types database to a file from
which it can be re-loaded for later use.

TM_AlignedCopy() copies data from a packed structure
in which no alignment rules are applied to a normal output
structure of the same type for which the alignment rules do
apply. These non-aligned structures may occur when reading
from files using the type manager. Different machine archi-
tectures and compilers pack data into structures with differ-
ent rules regarding the ‘padding’ inserted between fields. As
a result, these data structures may not align on convenient
boundaries for the underlying processor. For this reason, this
function is used to handle these differences when passing
data between dissimilar machine architecture.

TM_FixByteOrdering() corrects the byte ordering of a
given type from the byte ordering of a ‘source’ machine to
that of a ‘target’ machine (normally O for the current
machine architecture). This capability is often necessary
when reading or writing data from/to files originating from
another computer system. Common byte orderings sup-
ported are as follows:

kBigEndian e.g., the Macintosh PowerPC
kLittleEndian e.g., the Intel x86 architecture
kCurrentByteOrdering current machine architecture

TM_FindTypeDB() can be used to find the TypeDB
handle that contains the definition of the type name specified
(if any). There are multiple type DBs in the system which are
accessed such that user typeDBs are consulted first, fol-
lowed by system type DBs. The type DBs are accessed in the
reverse order to that in which they were defined. This means
that it is possible to override the definition of an existing
type by defining a new one in a later types DB. Normally the
containing typeDB can be deduced from the type 1D alone
(which contains an embedded DB index), however, in cases
where only the name is known, this function deduces the
corresponding DB. This routine returns the handle to con-
taining type DB or NULL if not found. This invention allows
for a number of distinct type DBs to co-exist so that types
coming from different sources or relating to different func-
tional areas may be self contained. In the preferred embodi-
ment, these type DBs are identified by the letters of the

US 7,158,984 B2

7

alphabet (‘A to ‘Z’) yielding a maximum of 26 fixed type
databases. In addition, temporary type databases (any num-
ber) can be defined and accessed from within a given process
context and used to hold local or temporary types that are
unique to that context. All type DBs are connected together
via a linked list and types from any later database may
reference or derive from types in an earlier database (the
converse is not true). Certain of these type DBs may be
pre-defined to have specialized meanings. A preferred list of
type DBs that have specialized meanings as follows:

‘A’—built-in types and platform Toolbox header files

‘B*—GUI framework and environment header files

‘C’—Project specific header files

‘D’—Flat data-model structure old-versions DB (allows

automatic adaptation to type changes)
‘E’—Reserved for ‘proxy’ types
‘F’—Reserved for internal dynamic use by the environ-
ment

‘I’—Project specific ontology types

TM_GetTypelD() retrieves a type’s ID Number when
given its name. If aTypeName is valid, the type ID is
returned, otherwise 0 is returned and an error is reported.

TM_IsKnownTypeName() is almost identical but does not
report an error if the specified type name cannot be found.
TM_ComputeTypeBaselD() computes the 32-bit unique
type base ID for a given type name, returning it in the most
significant 32-bit word of a 64-bit ET_TypelD 104. The base
1D is calculated by hashing the type name and should thus
be unique to all practical purposes. The full typelD is a
64-bit quantity where the base ID as calculated by this
routine forms the most significant 32 bits while a variety of
logical flags describing the type occupy the least significant
32-bits. In order to ensure that there is a minimal probability
of two different names mapping onto the same type ID, the
hash function chosen in the preferred embodiment is the
32-bit CRC used as the frame check sequence in ADCCP
(ANSI X3.66, also known as FIPS PUB 71 and FED-STD-
1003, the U.S. versions of CCITT’s X.25 link-level proto-
col) but with the bit order reversed. The FIPS PUB 78 states
that the 32-bit FCS reduces hash collisions by a factor of
10"-5 over the 16-bit FCS. Any other suitable hashing
scheme, however, could be used. The approach allows type
names to be rapidly and uniquely converted to the corre-
sponding type ID by the system. This is an important feature
if type information is to be reliably shared across a network
by different machines. The key point is that by knowledge of
the type name alone, a unique numeric type ID can be
formed which can then be efficiently used to access infor-
mation about the type, its fields, and its ancestry. The other
32 bits of a complete 64-bit type 1D are utilized to contain
logical flags concerning the exact nature of the type and are
provided in the Computer Program Listing Appendix.

Given these type flag definitions and knowledge of the
hashing algorithm involved, it is possible to define constants
for the various built-in types (i.e., those directly supported
by the underlying platform from which all other compound
types can be defined by accumulation). A sample list of
constants for the various built in types is provided in the
Computer Program Listing Appendix.

Assuming that the constant definitions set forth in the
Computer Program Listing Appendix are used, it is clear that
the very top of the type hierarchy, the built-in types (from
which all other types eventually derive), are similar to that
exposed by the C language.

Referring now to FIG. 4, a diagrammatic representation of
a built-in type is shown (where indentation implies a descen-

20

25

30

35

40

45

50

55

60

65

8
dant type). Within the kUniversalType 405, the set of direct
descendants includes kVoidType 410, kScalarType 415,
kStructType 420, kUnionType 425, and kFunctionType 430.
kScalarType also includes descendants for handling integers
435, descendants for handling real numbers 440 and descen-
dants for handling special case scalar values 445. Again, this
illustrates only one embodiment of built-in types that may be
utilized by the present system.

The following description provides a detailed summary of
some of the functions that may be used in conjunction with
the present invention. This list is not meant to be exhaustive
nor or many of these functions required (depending upon the
functionality required for a given implementation). The
pseudo code associated with these functions is further illus-
trated in the Computer Program Listing Appendix. It will be
obvious to those skilled in the art how these functions could
be implemented in code.

Returning now to the Computer Program Listing Appen-
dix, a function TM_CleanFieldName() is defined which
provides a standardized way of converting field names
within a type into human readable labels that can be dis-
played in a Ul By choosing suitable field names for types,
the system can create “human readable” labels in the cor-
responding UT. The conversion algorithm can be imple-
mented as follows:

1) Convert underscores to spaces, capitalizing any letter

that immediately follows the underscore

2) Capitalize the first letter

3) Insert a space in front of every capitalized letter that
immediately follows a lower case letter

4) Capitalize any letter that immediately follows a
character (field path delimiter)

5) De-capitalize the first letter of any of the following
filler words (unless they start the sentence):
“an”, “and”, “of”, “the”, “or” “to”, “is”, “as

So for example:

“aFieldName” would become “A Field Name” as
would “a_field_name”

“timeOfDay” would become “Time of Day” as would
“time_of_day”

A function, such as TM_AbbreveFieldName(), could be
used to provide a standardized way of converting field
names within a type into abbreviated forms that are still
(mostly) recognizable. Again, choosing suitable field names
for types ensures both human readable labels in the corre-
sponding Ul as well as readable abbreviations for other
purposes (such as generating database table names in an
external relational database system). The conversion algo-
rithm is as follows:

1) The first letter is copied over and capitalized.

2) For all subsequent letters:

a) If the letter is a capital, copy it over and any
‘numlLowerCase’ lower case letters that immediately
follow it.

b) If the letter follows a space or an underscore, copy
it over and capitalize it

c) If the letter is*.’, ‘[’, or ‘|’, convert it (and any
immediately subsequent letters in this set) to a single
¢_’ character, capitalize the next letter (if any). This
behavior allows this function to handle field paths.

d) otherwise discard it

So for example:

“aFieldName” would become “AFiNa” as would
“a_field_name” if ‘numLowerCase’ was 1, and it
would be ‘AFieNam’ if it were 2

<

TR
, a

US 7,158,984 B2

9

“timeOfDay” would become “TiOfDa” as would “time of
day” if ‘numlowerCase’ was 1, and it would be
‘TimOfDay’ if it were 2

For a field path example:

“geog.city[3].population” would become “Ge_Ci__
3_Po” if ‘numLowerCase’ was

Wrapper functions, such as TM_SetTypeEdit(), TM_Set-
TypeDisplay(), TM_SetTypeConverter(), TM_SetTypeC-
typedef(), TM_SetTypeKeyWords(), TM_SetTypeDescrip-
tion(), and TM_SetTypeColor(), may be used set the
corresponding field of the ET_Type structure 200. The
corresponding ‘get’ functions are simply wrapper functions
to get the same field.

A function, TM_SetTypelcon(), may be provided that sets
the color icon ID associated with the type (if specified). It is
often useful for Ul purposes to associate an identifiable icon
with particular types (e.g., a type of occupation), this icon
can be specified using TM_SetTypelcon() or as part of the
normal acquisition process. Auto-generated Ul (and many
other UI context) may use such icons to aid in UT clarity.
Icons can also be inherited from ancestral types so that it is
only necessary to specify an icon if the derived type has a
sufficiently different meaning semantically in a Ul context.
The function TM_GetTypelcon() returns the icons associ-
ated with a type (if any).

A function, such as TM_SetTypeKeyType(), may be used
to associate a key data type (see TM_GetTypeKeyType)
with a type manager type. By making this association, it is
possible to utilize the full suite of behaviors supported for
external APIs such as Database and Client-Server APIs,
including creation and communication with server(s) of that
type, symbolic invocation, etc. For integration with external
APIs, another routine, such as TM_KeyTypeToTypelD(),
may be used to obtain the type manager type ID correspond-
ing to a given key data type. If there is no corresponding type
1D, this routine returns zero.

Another function, TM_GetTypeName(), may be used to
get a type’s name given the type ID number. In the preferred
embodiment, this function returns using the ‘aTypeName’
parameter, the name of the type.

A function, such as TM_Find TypesByKeyword(), may be
used to search for all type DBs (available from the context
in which it is called) to find types that contain the keywords
specified in the ‘aKeywordList’ parameter. If matches are
found, the function can allocate and return a handle to an
array of type IDs in the ‘thelDList” parameter and a count of
the number of elements in this array as it’s result. If the
function result is zero, ‘theIDList’ is not allocated.

The function TM_GetTypeFileName() gets the name of
the header file in which a type was defined (if any).

Given a type ID, a function, such as TM_GetParent-
TypelD(), can be used to get the ID of the parent type. If the
given ID has no parent, an ID of 0 will be returned. If an
error occurs, a value of -1 will be returned.

Another function, such as TM_IsTypeDescendant(), may
be used to determine if one type is the same as or a
descendant of another. The TM_IsTypeDescendant() call
could be used to check only direct lineage whereas TM_ Are-
TypesCompatible() checks lineage and other factors in
determining compatibility. If the source is a descendant of,
or the same as, the target, TRUE is returned, otherwise
FALSE is returned.

Another set of functions, hereinafter referred to as
TM_TypelsPointer(), TM_TypelsHandle(), TM_Typels-
RelRef() TM_TypelsCollectionRef(). TM_TypelsPersis-
tentRef(), may be used to determine if a typelD represents
a pointer/handle/relative etc. reference to memory or the

20

25

30

35

40

45

50

55

60

65

10

memory contents itself (see typelD flag definitions). The
routines optionally return the typelD of the base type that is
referenced if the type ID does represent a pointer/handle/ref.
In the preferred embodiment, when calling TM_Typels
Ptr(), a type ID that is a handle will return FALSE so the
determination of whether the type is a handle, using a
function such as TM_TypelsHandle(), could be checked
first where both possibilities may occur. The function
TM_TypelsReference() will return true if the type is any
kind of reference. This function could also return the par-
ticular reference type via a parameter, such as the ‘refType’
parameter.

Another function, such as TM_TypesAreCompatible(),
may be used to check if the source type is the same as, or a
descendant of, the target type. In the preferred embodiment,
this routine returns:

+1 If the source type is a descendant of the target type (a

legal connection)

-1 If the source type is a group type (no size) and the

target is descended from it (also a legal connection)

0 Otherwise (an illegal connection)

If the source type is a ‘grouping’ type (e.g., Scalar), i.e.,
it has no size then this routine will return compatible if either
the source is ancestral to the target or vice-versa. This allows
for data flow connections that are typed using a group to be
connected to flows that are more restricted.

Additional functions, such as TM_GetTypeSize() and
TM_SizeOf(), could be applied in order to return the size of
the specified data type. For example, TM_GetTypeSize()
could be provided with an optional data handle which may
be used to, determine the size of variable sized types (e.g.,
strings). Either the size of the type could be returned or,
alternatively, a () could be returned for an error.
TM_SizeOf() could be provided with a similar optional data
pointer. It also could return the size of the type or O for an
error.

A function, such as TM_GetTypeBounds(), could be
programmed to return the array bounds of an array type. If
the type is not an array type, this function could return a
FALSE indicator instead.

The function TM_GetArrayTypeElementOffset() can be
used to access the individual elements of an array type. Note
that this is distinct from accessing the elements an array
field. If a type is an array type, the parent type is the type of
the element of that array. This knowledge can be used to
allow assignment or access to the array elements through the
type manager API.

The function TM_InitMem() initializes an existing block
of memory for a type. The memory will be set to zero except
for any fields which have values which will be initialized to
the appropriate default (either via annotation or script
calls—not discussed herein). The function TM_NewPtr()
allocates and initializes a heap data pointer. If you wish to
allocate a larger amount of memory than the type would
imply, you may specify a non-zero value for the ‘size’
parameter. The value passed should be TM_GetTypeSize
(...)+ the extra memory required. If a type ends in a
variable sized array parameter, this will be necessary in
order to ensure the correct allocation. The function TM_Ne-
wHdl() performs a similar function for a heap data handle.
The functions TM_DisposePtr() and TM_DisposeHdl()
may be used to de-allocate memory allocated in this manner.

The function TM_ILocalFieldPath() can be used to trun-
cate a field path to that portion that lies within the specified
enclosing type. Normally field paths would inherently sat-
isfy this condition, however, there are situations where a
field path implicitly follows a reference. This path truncation

US 7,158,984 B2

11

behavior is performed internally for most field related calls.
This function should be used prior to such calls if the
possibility of a non-local field path exists in order to avoid
confusion. For example:

typedef struct t1
{
char x[;1°6];
}tL;
typedef struct t2
{
tl v
2
then TM__LocalFieldPath(,t2,"y.x[3]”,) would yield the string “y”.

Given a type ID, and a field within that type, TM_Get-
FieldTypelD() will return the type ID of the aforementioned
field or O in the case of an error.

The function TM_GetBuiltInAncestor() returns the first
built-in direct (i.e., not via a reference) ancestor of the type
1D given.

Two functions, hereinafter called TM_GetlntegerValue()
and TM_GetRealValue(), could be used to obtain integer
and real values in a standardized form. In the preferred
embodiment, if the specified type is, or can be converted to,
an integer value, the TM_GetlntegerValue() would return
that value as the largest integer type (i.e., int64). If the
specified type is, or can be converted to, a real value,
TM_GetRealValue() would return that value the largest real
type (i.e., long double). This is useful when code does not
want to be concerned with the actual integer or real variant
used by the type or field. Additional functions, such as
TM_SetlntegerValue() and TM_SetReal Value(), could per-
form the same function in the opposite direction.

Given a type 1D, and a field within that type, a function,
hereinafter called TM_GetFieldContainerTypelD(), could
be used to return the container type ID of the aforementioned
field or O in the case of an error. Normally the container type
1D of a field is identical to ‘aTypelD’, however, in the case
where a type inherits fields from other ancestral types, the
field specified may actually be contributed by one of those
ancestors and in this case, the type ID returned will be some
ancestor of ‘aTypelD’. In the preferred embodiment, if a
field path is specified via ‘aFieldName’ (e.g., fieldl.field2)
then the container type 1D returned would correspond to the
immediate ancestor of ‘field2’, that is ‘field1’. Often these
inner structures are anonymous types that the type manager
creates during the types acquisition process.

A function, hereinafter called TM_GetFieldSize(),
returns the size, in bytes, of a field, given the field name and
the field’s enclosing type; () is returned if unsuccessful.

A function, hereinafter called TM_IsLegalFieldPath(),
determines if a string could be a legal field path, i.e., does not
contain any characters that could not be part of a field path.
This check does not mean that the path actually is valid for
a given type, simply that it could be. This function operates
by rejecting any string that contains characters that are not
either alphanumeric or in the set “[*,”]’,°_’, or *.”. Spaces are
allowed only between ‘[‘and °]’.

Given an enclosing type ID, a field name, and a handle to
the data, a function, hereinafter known as TM_GetFieldVal-
ueH(), could be used to copy the field data referenced by the
handle into a new handle. In the preferred embodiment, it
will return the handle storing the copy of the field data. If the
field is an array of ‘char’, this call would append a termi-
nating null byte. That is if a field is “char[4]” then at least

20

40

45

50

12

a 5 byte buffer must be allocated in order to hold the result.
This approach greatly simplifies C string handling since
returned strings are guaranteed to be properly terminated. A
function, such as TM_GetFieldValueP(), could serve as the
pointer based equivalent. Additionally, a function such as
TM_SetFieldValue() could be used to set a field value given
a type ID, a field name and a binary object. It would also
return an error code in an error.

A function, such as TM_SetCStringFieldValue(), could
be used to set the C string field of a field within the specified
type. This function could transparently handle logic for the
various allowable C-string fields as follows:

1) if the field is a charHdl then:

a) if the field already contains a value, update/grow the
existing handle to hold the new value

b) otherwise allocate a handle and assign it to the field

2) if the field is a charPtr then:

a) if the field already contains a value:

1) if the previous string is equal to or longer than the
new one, copy new string into existing pointer
ii) otherwise dispose of previous pointer, allocate a

new one and assign it

b) otherwise allocate a pointer and assign it to the field

3) if the field is a relative reference then:

a) this should be considered an error. A pointer value
could be assigned to such a field prior to moving the
data into a collection in which case you should use
a function similar to the TM_SetFieldValue() func-
tion described above.

4) if the field is an array of char then:

a) if the new value does not fit, report array bounds
error

b) otherwise copy the value into the array

A function, such as TM_AssignToField(), could be used
to assign a simple field to a value expressed as a C string. For
example, the target field could be:

a) Any form of string field or string reference;

b) A persistent or collection reference to another type; or

¢) Any other direct simple or structure field type. In this

case the format of the C string given should be com-
patible with a call to TM_StringToBinary() (described
above) for the field type involved. The delimiter for TM

StringToBinary() is taken to be “,” and the ‘kCharAr-

rayAsString” option (see TM_BinaryToString) is

assumed.

In the preferred embodiment, the assignment logic used
by this routine (when the ‘kAppendStringValue’ is present)
would result in existing string fields having new values
appended to the end of them rather than being overwritten.
This is in contrast to the behavior of TM_SetCStringField-
Value() described above. For non-string fields, any values
specified overwrite the previous field content with the
exception of assignment to the ‘aStringH’ field of a collec-
tion or persistent reference with is appended if the ‘kAp-
pendStringValue’ option is present. If the field being
assigned is a collection reference and the ‘kAppend-
StringValue’ option is set, the contents of ‘aStringPtr’ could
be appended to the contents of a string field. If the field being
assigned is a persistent reference, the ‘kAssignToRefType’,
‘kAssignToUniquelD’ or ‘kAssignToStringH* would be
used to determine if the typelD, unique ID, or ‘aStringH’
field of the reference is assigned. Otherwise the assignment
is to the name field. In the case of ‘kAssignToRefType’, the
string could be assumed to be a valid type name which is first
converted to a type ID. If the field is a relative reference
(assumed to be to a string), the contents of ‘aStringPtr’ could
be assigned to it as a (internally allocated) heap pointer.

US 7,158,984 B2

13

Given an enclosing type ID, a field name, and a pointer to
the data, a function such as TM_SetArrFieldValue() could
be used to copy the data referenced by the pointer into an
element of an array field element into the buffer supplied.
Array fields may have one, or two dimensions.

Functions, hereinafter named TM_GetCStringFieldVal-
ueB(), TM_GetCStringFieldValueP() and TM_GetCString-
FieldValueH(), could be used to get a C string field from a
type into a buffer/pointer/handle. In the case of a buffer, the
buffer supplied must be large enough to contain the field
contents returned. In other cases the function or program
making the call must dispose of the memory returned when
no longer required. In the preferred embodiment, this func-
tion will return any string field contents regardless of how is
actually stored in the type structure, that is the field value
may be in an array, via a pointer, or via a handle, it will be
returned in the memory supplied. If the field type is not
appropriate for a C string, this function could optionally
return FALSE and provide an empty output buffer.

Given an enclosing type ID, a field name, and a pointer to
the data, the system should also include a function, herein-
after name TM_GetArrFieldValueP (), that will copy an
element of an array field element’s data referenced by the
pointer into the buffer supplied. Array fields may have one,
or two dimensions.

Simple wrapper functions, hereinafter named TM_Get-
FieldBounds(), TM_GetFieldOffset(), TM_GetField
Units(), and TM_GetFieldDescription(), could be provided
in order to access the corresponding field in ET_Field 100.
Corresponding ‘set’ functions (which are similar) could also
be provided.

The function TM_ForAllFieldsLoop() is also provided
that will iterate through all fields (and sub-fields) of a type
invoking the specified procedure. This behavior is common-
place in a number of situations involving scanning the fields
of'a type. In the preferred embodiment, the scanning process
should adhere to a common approach and as a result a
function, such as this one, should be used for that purpose.
A field action function takes the following form:

20

25

30

35

14

reflected in the ‘fieldPath’ parameter, the appropriate
element specific value in ‘fieldOffset’, and () for both
dimension 1 and dimension 2.

This choice of behavior for array fields offers the simplest
functional interface to the action function. Options are:

kRecursiveLoop—If set, recurses through sub-fields, oth-

erwise one-level only

kDataPtrIsViewRef—The ‘aDataPtr’ is the address of an

ET_ViewRef designating a collection element

A function, hereinafter referred to as TM_FieldNameEx-
ists(), could be used to determine if a field with the given
name is in the given type, or any of the type’s ancestral
types. If the field is found return it returns TRUE, otherwise
it returns FALSE.

A function, hereinafter referred to as TM_GetNumber-
OfFields(), may be used to return the number of fields in a
given structured type or a —1 in the case of an error. In the
preferred embodiment, this number is the number of direct
fields within the type, if the type contains sub-structures, the
fields of these sub-structures are not counted towards the
total returned by this function. One could use another
function, such as TM_ForAllFieldsLoop(), to count fields
regardless of level with ‘kRecursivel.oop’ set true and a
counting function passed for ‘aFieldFn’ (see TM_GetType-
MaxFlaglndex).

Another function, referred to as TM_GetFieldFlag
Index(), can provide the ‘flag index’ for a given field within
a type. The flag index of a field is defined to be that field’s
index in the series of calls that are made by the function
TM_ForAllFieldsLoop() (described above) before it
encounters the exact path specified. This index can be
utilized as an index into some means of storing information
or flags specific to that field within the type. In the preferred
embodiment, these indices include any field or type arrays
that may be within the type. This function may also be used
internally by a number of collection flag based APIs but may
also be used by external code for similar purposes. In the
event that TM_ForAllFieldsLoop() calls back for the
enclosing structure field before it calls back for the fields

Boolean myActionFn (

// my field action function

ET_TypeDBHd1 aTypeDBHdI, // I: Type DB (NULL to default)

ET__TypelD 104 aTypelD, // I: The type ID

ET_TypeID 104 aContainingTypelD, // I: containing Type ID of field

anonPtr aDataPtr, // I: The type data pointer

anonPtr context, // 10:Use to pass custom context

charPtr fleldPath, // I:Field path for field

ET__TypeID 104 aFieldTypelD, // I:'Type ID for field

int32 dimensionl, // I:Field array bounds 1 (0 if
N/A)

int32 dimension?2, // I:Field array bounds 2 (0 if
N/A)

int32 fieldOffset, /] T:Offset of start of field

int32 options, // 1:Options flags

anonPtr internalUseOnly // I:For internal use only

) // R:TRUE for success

In this example, fields are processed in the order they
occur, sub-field calls (if appropriate) occur after the con-
taining field call. If this function encounters an array field (1
or 2 dimensional), it behaves as follows:

a) The action function is first called once for the entire

field with no field indexing specified in the path.

b) If the element type of the array is a structure (not a

union), the action function will be invoked recursively
for each element with the appropriate element index(es)

60

65

within this enclosing structure, the index may be somewhat
larger than the count of the ‘elementary’ fields within the
type. Additionally, because field flag indices can be easily
converted to/from the corresponding field path (see
TM_FlaglndexToFieldPath), they may be a useful way of
referring to a specific field in a variety of circumstances that
would make maintaining the field path more cumbersome.
Supporting functions include the following: TM_FieldOff-
setToFlagIndex() is a function that converts a field offset to

US 7,158,984 B2

15

the corresponding flag index within a type; TM_Flagln-
dexToFieldPath() is a function that converts a flag index to
the corresponding field path within a type; and the function
TM_GetTypeMaxFlaglndex() returns the maximum pos-
sible value that will be returned by TM_GetFieldFlag
Index() for a given type. This can be used for example to
allocate memory for flag storage.

Another function, referred to as TM_FieldNamesTolnde-
ces(), converts a comma separated list of field names/paths
to the corresponding zero terminated list of field indices. It
is often the case that the ‘fieldNames’ list references fields
within the structure that is actually referenced from a field
within the structure identified by ‘aTypelD’. In this case, the
index recorded in the index list will be of the referencing
field, the remainder of the path is ignored. For this reason,
it is possible that duplicate field indices might be implied by
the list of ‘fieldNames’ and as a result, this routine can also
be programmed to automatically eliminate duplicates.

A function, hereinafter name TM_GetTypeProxy(), could
be used to obtain a proxy type that can be used within
collections in place of the full persistent type record and
which contains a limited subset of the fields of the original
type. While TM_GetTypeProxy() could take a list of field
indices, the function TM_MakeTypeProxyFromFields()
could be used to take a comma separated field list. Other-
wise, both functions would be identical. Proxy types are all
descendant of the type ET_Hit and thus the first few fields
are identical to those of ET_Hit. By using these fields, it is
possible to determine the original persistent value to which
the proxy refers. The use of proxies enables large collections
and lists to be built up and fetched from servers without the
need to fetch all the corresponding data, and without the
memory requirements implied by use of the referenced
type(s). In the preferred embodiment, proxy types are
formed and used dynamically. This approach provides a key
advantage of the type system of this invention and is crucial
to efficient operation of complex distributed systems. Proxy
types are temporary, that is, although they become known
throughout the application as soon as they are defined using
this function, they exist only for the duration of a given run
of the application. Preferably, proxy types are actually
created into type database ‘E’ which is reserved for that
purpose (see above). Multiple proxies may also be defined
for the same type having different index lists. In such a case,
if a matching proxy already exists in ‘E’, it is used. A proxy
type can also be used in place of the actual type in almost all
situations, and can be rapidly resolved to obtain any addi-
tional fields of the original type. In one embodiment, proxy
type names are of the form:

typeName_Proxy_n

Where the (hex) value of ‘n’ is a computed function of the
field index list.

Another function that may be provided as part of the API,
hereinafter called TM_MakeTypeProxyFromFilter(), can be
used to make a proxy type that can be used within collec-
tions in place of the full persistent type record and which
contains a limited subset of the fields of the original type.
Preferably, the fields contained in the proxy are those
allowed by the filter function, which examines ALL fields of
the full type and returns TRUE to include the field in the
proxy or FALSE to exclude the field. For more information
concerning proxy types, see the discussion for the function
TM_MakeTypeProxyFromFields(). The only difference
between this function and the function TM_Make-
TypeProxyFromFields() is that TM_MakeTypeProxyFrom-
Fields() expects a comma separated field list as a parameter
instead of a filter function. Another function,

20

25

30

35

40

45

50

55

60

65

16

TM_IsTypeProxy(), could be used to determine if a given
type is a proxy type and if so, what original persistent type
it is a proxy for. Note that proxy type values start with the
fields of ET_Hit and so both the unique ID and the type ID
being referenced may be obtained more accurately from the
value. The type ID returned by this function may be ances-
tral to the actual type ID contained within the proxy value
itself. The type ET_Hit may be used to return data item lists
from servers in a form that allows them to be uniquely
identified (via the system and _id fields) so that the full (or
proxy) value can be obtained from the server later. ET_Hit
is defined as follows:

typedef struct ET__Hit // list of query hits returned by a

server

OSType __system; // system tag

unsInt64 _id; // local unique item ID

ET_TypelD 104 __type; // type ID

int32 __relevance; // relevance value 0 . . . 100
} ET__Hit;

The function TM_GetNthFieldType() gets the type of the
Nith field in a structure. TM_GetNthFieldName() obtains the
corresponding field name and TM_GetNthFieldOffset() the
corresponding field offset.

Another function that may be included within the API
toolset is a function called TM_GetTypeChildren(). This
function produces a list of type IDs of the children of the
given type. This function allocates a zero terminated array of
ET_TypelD 104’s and returns the address of the array in
‘aChildIDList’; the type ID’s are written into this array. If
‘aChildIDList’ is specified as NULL then this array is not
allocated and the function merely counts the number of
children; otherwise ‘aChildIDList” must be the address of a
pointer that will point at the typelD array on exit. A negative
number is returned in the case of an error. In the preferred
embodiment, various specialized options for omitting cer-
tain classes of child types are supported.

A function, hereinafter referred to as TM_GetTypeAnces-
tors(), may also be provided that produces a list of type IDs
of ancestors of the given type. This function allocates a zero
terminated array of ET TypelD 104 and returns the address
of the array in ‘ancestrallDs’; the type ID’s are written into
this array. If ‘ancestrallDs’ is specified as NULL then this
array is not allocated and the function merely counts the
number of ancestors; otherwise ‘ancestrallDs’ must be the
address of a pointer that will point at the typelD array on
exit. The last item in the list is a 0, the penultimate item is
the primal ancestor of the given type, and the first item in the
list is the immediate predecessor, or parent, of the given
type. The function TM_GetTypeAncestorPath() produces a
‘:” separated type path from a given ancestor to a descendant
type. The path returned is exclusive of the type name but
inclusive of the descendant, empty if the two are the same
or ‘ancestorID’ is not an ancestor or ‘aTypelD’. The function
TM_GetlnheritanceChain() is very similar to TM_GetTy-
peAncestors() with the following exceptions:

(1) the array of ancestor type ids returned is in reverse
order with the primal ancestor being in element O.
(2) the base type from which the list of ancestors is

determined is included in the array and is the next to
last element (array is O terminated)
(3) the count of the number of ancestors includes the base

type

